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Abstract
The high incidence of stroke occurrence necessitates the understanding of its causes and possible ways for early prediction 
and prevention. In this respect, statistical methods offer the “big picture,” but they have a weak predictive ability at an indi-
vidual level. This research proposes a new personalized modeling method based on computational spiking neural networks 
(SNN) for the identification of causal associations between clinical and environmental time series data that can be used 
to predict individual stroke events. The method is tested on 804 stroke patients. Given a clinical data set of patients who 
experienced a stroke in the past and the corresponding environmental time-series data for a selected time-window before 
the stroke event, the method identifies the clusters of individuals with a high risk for stroke under similar conditions. The 
methodology involves a pipeline of processes when creating a personalized model for an individual x : (1) selecting a group of 
individuals Gx with similar personal records to x ; (2) training a personalized SNN x model of several days of environmental 
data related to the Gx group to predict the risk of stroke for x at least one day earlier; (3) model interpretability through 3D 
visualization; (4) discovery of personalized predictive markers. The results are twofold, first proposing a new computational 
methodology and second presenting new findings. It is found that certain environmental factors, such as SO2, PM10, CO, and 
PM2.5, increase the risk of stroke if an individual x belongs to a certain cluster of people, characterized by a combination 
of family history of stroke and diabetes, overweight, vascular/heart disease, age, and other. For the used population data, 
the proposed method can predict accurately individual risk of stroke before the day of the stroke. The paper presents a new 
methodology for personalized machine learning methods to define subgroups of the population with a high risk of stroke 
and to predict early individual risk of the stroke event. This makes the proposed cognitive computation method useful to 
reduce morbidity and mortality in society. The method is broadly applicable for predicting individual risk of other diseases 
and mental health conditions.
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Introduction

Stroke is the second leading cause of death and disability 
worldwide [1, 2]. Stroke is a neurological condition with 
a rapid increase of severity of neurological signs within 
the first minutes and hours after its onset. Early treatment 
could improve health and well-being outcomes and the 
success of neurorehabilitation process. Also, stroke is a 
highly preventable disease, and primary prevention of 
stroke is the most effective solution to reduce its impact 
and burden [3]. Thus, stroke risk prediction can contribute 
both to its prevention and early treatment. There is evi-
dence that theoretically 80 to 90% of stroke can be avoided 
by modifying various metabolic, lifestyle, and environ-
mental factors, and there are large geographical variations 
in the population-attributable and lifetime risk of stroke 
for different risk factors [4, 5].

The high preventability of stroke and population and 
individual variations in the risk of stroke offers an oppor-
tunity for developing systems of stroke occurrence pre-
diction. Numerous studies have been conducted to iden-
tify predictors of stroke [2–4]. Such predictors can be a 
combination of different information sources, including 
the patient’s historical health and medical records, and 
demographics. Although several investigations have been 
conducted for the identification of clinical risk factors of 
stroke, the influences of environmental factors on stroke 
incidents are not much understood, although these factors 
may be responsible for up to one-third of stroke burden [4].

Some studies confirmed the relationship between stroke 
and elevated nitrogen dioxide (NO2) in Shanghai and Tai-
wan [6, 7]. Research in China suggested that an enhanced 
rate of hospital stroke admissions was associated with 
the effects of different elevated gases including NO2, sul-
fur dioxide (SO2), and O3. Recent research in the USA 
reported on the relationships between ischemic stroke risk 
and particle matter (PM2.5) and O3 exposure, suggesting 
that a further investigation of pollution and stroke asso-
ciation is essential [8]. Some studies [9–13] explored the 
effects of stroke risk related to temperature factors and 
suggested that the rate of stroke occurrence appeared to 
be higher in colder months during winter-spring. Another 
study [14] reported that a 2-day environmental tempera-
ture measurement period of higher temperatures (the 60 s 
and 70 s in degrees Fahrenheit) was associated with stroke 
deaths in selected areas of the USA. Associations of ambi-
ent temperature with stroke risk but with a time lag of 3 to 
4 days were found in another research [15].

Although several studies focused on the links between 
single environmental factors and risk of stroke occurrence 
over the whole studied population [13, 16, 17], modeling 
of the association between a whole group of different 

environmental factors and personal health-related features 
that could contribute to the individualized short-term pre-
diction of stroke is still limited worldwide [18, 19].

The current research proposes a new method to explore 
how a combination of personal clinical health variables and 
environmental changes over time can influence the individ-
ual risk of stroke from a defined subgroup of the popula-
tion. For this purpose, we developed a new methodology 
for personalized predictive modeling using spiking neural 
networks (SNN), called PSNN. SNN have already been 
proposed as superior techniques when modeling temporal 
data, changing over time. SNN represent and learn these 
changes as sequences of spikes [20]. A class of SNN has 
been developed to deal with spatio-temporal data [21], such 
as NeuCube [22, 23] to integrate static and dynamic infor-
mation [24] and to extract symbolic rules from such data 
[25, 26]. In this paper, based on available clinical and envi-
ronmental data, we first define a subgroup of the population 
at risk, and using this subgroup, we develop a personalized 
SNN model for each new individual to predict the risk of 
stroke event before the day of the occurrence. This method 
supports model interpretability that allows us to recognize 
which interactions between clinical and environmental risk 
factors could increase the risk of stroke for an individual or 
a group of individuals and predict this risk earlier. Com-
pared to the methods proposed in [27] and [28], the current 
research introduces new methods for personalized modeling 
of an individual stroke occurrence, as well as identification 
of combined clinical and environmental risk factors associ-
ated with defined clusters of individuals.

Methods

The method introduced here is for the creation of a person-
alized modeling system to predict individual risk of stroke 
concerning integrated datasets from clinical data and envi-
ronmental time series over several days before the stroke. 
Given a time-window Te of environmental data De and 
clinical data Dc for patients who experienced a stroke in 
the past, the method first selects a subgroup of population G 
for which a personalized SNN model can accurately predict 
their stroke event at least one day earlier. Then, for every 
new individual x , (1) a cluster Dcgx of individuals from the 
data set Dcg is selected with similar clinical records to the 
person x ; (2) a personalized computational model of SNN 
x is developed using the environmental data Deg x; (3) clas-
sifying and predicting the stroke risk for the person after the 
time-window Te days; and (4) model interpretability through 
3D visualization of the interaction between the changes of 
the environmental features during the high-risk period for 
this person.
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Method and System for Personalized Predictive 
Modeling on Integrated Personal Clinical Data 
and Dynamic Data of Environmental Changes

The architecture of the proposed methodology is illustrated 
in Fig. 1, which represents the computational steps of build-
ing a personalized predictive model for an individual.

Figure 1b shows that for a new individual x, the k near-
est neighboring samples is found by computing a pairwise 
normalized Euclidean distance between the clinical health 
information (one static vector) of individual x and the other 
individuals’ clinical records. We also included the impor-
tance of the data features when computing the distance. This 
was measured by signal-to-noise ratio (SNR) [29] that is a 
statistical measurement to rank the variables with respect to 
their power in differentiating the samples to different classes 
(health conditions). This method of selecting the nearest 
samples to the individual x is called weighted–weighted dis-
tance k-nearest neighbors (WWKNN) method [28], where 
the first W is the SNR rank of the variables and the sec-
ond W is the Euclidean distance. Figure 2a illustrates the 
distance between clinical records of one randomly selected 
individual x (id-1 among 804 patients) and the other 803 
individuals. The green bars are those individuals with high 
similarity to individual x when an adaptive radius threshold 
r is applied (formed cluster Dcgx ) to define the neighborhood 
radius. We assigned three different values to the threshold r 
which are µ or µ + σ or µ + σ to optimal the value of k, where 
µ is the mean value and σ is the standard deviation computed 

in the Euclidean distances of all individuals’ data vectors to 
individual x vector.

For each of the k selected individuals in Dcgx , the time in 
which an individual had a stroke is indexed in the environ-
mental data. When moving backwards from the index time, 
the closer an individual is to the onset of stroke occurrence, 
the greater interaction of risk factors is likely to be observed. 
Therefore, a time-window (in our experiment here, the time-
window Te has a length of 7 days = 168 h) positioned before 
the stroke onset can be considered as a “high-risk” interval. 
Another 7-day time-window positioned at 2 months before 
the stroke can be considered as a “low-risk” interval. Fig-
ure 1c shows that for every individual from Dcgx , two envi-
ronmental intervals are extracted as two temporal samples, 
one belongs to the class “high-risk” environment and the 
other one belongs to the class “low risk” environment. Fig-
ure 2b shows an example of three environmental variables 
changing over a time-window of 168 h from two classes: 
high-risk and low-risk environmental data. The method 
allows to explore different lengths of the time-window Te , 
and for each time-window, different subgroups of individu-
als can be selected for which the environmental factors in 
this window in combination with their clinical factors can 
cause a high risk for stroke after the selected number of days.

Figure 1d shows that the selected environmental data 
samples Degx are used to build a PSNN x, model for individ-
ual x for mapping, learning, visualizing, and classification of 
“high-risk” and “low-risk” environmental data periods. The 
proposed PSNN x model is a reservoir computing system 

Fig. 1   Schema of the personalized modeling system for integrated 
clinical data and dynamic environmental data Dce (shown in a) for 
individual stroke prediction. (b) For a new individual x , a cluster 
Dcgx of individuals is selected from a data set Dc of patients with 
stoke in the past in respect to similarity in their clinical data. (c) A 
time-window Te of several days of high-risk and low-risk environ-

mental data changes prior to stroke event of each patient from the 
cluster Dcgx are extracted, called Degx . (d) Selected time series Degx 
are used to train a PSNN x model. The model is then tested using 
the high-risk and low-risk environmental periods from individual x 
to detect if the person x is in a high- or low-risk period for a stroke 
occurrence
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that consists of artificial spiking neurons as processing ele-
ments, spatio-temporal connections between the neurons, 
and biologically plausible algorithms for learning from data 
[23, 30–32]. Here, the designed PSNN x model is a recur-
rent network which is transpired as a promising architecture 
to learn spatio-temporal patterns from spatio-temporal data 
[23]. Modeling of environmental samples using PSNN com-
prised the following phases:

–	 Encoding of environmental samples to spikes.
–	 Spatial mapping of the environmental features into a 

3-dimensional PSNN model.
–	 Unsupervised learning in the PSNN model.
–	 Supervised learning to detect the association between the 

training samples and their class labels (high-risk and low-
risk environments). Then, the environmental samples of 
individual x (which were excluded from the learning 
phase) were used to cross-validate the model.

–	 Optimization process.

The aforesaid methodological phases are explained as 
follows:

Encoding of Environmental Time‑Series Data   To transfer the 
temporal samples into an SNN model, they need to be first 
encoded into sequences of binary events, called spikes which 
represent significant changes in time. For this, a threshold-
based representation method (TBR) method (examples 
shown in [33–44]) is used to encode the environmental data 
changes to spikes (encoded to 1 if an upward change exceeds 
a pre-defined encoding threshold, or to −1 for a downward 
change).

Environmental Data Mapping into a Personalized SNN 
Model   In this dataset, the environmental data samples 
are defined using 10 environmental time series vari-
ables. To spatially map these variables, we first created a 

3-dimensional PSNN model which contains 1000 artificial 
spiking neurons as computational units. The temporal vari-
ables are mapped to the PSNN model, so that the closer the 
variables are mapped together, the higher the correlations 
between their encoded spike sequences [45, 46]. When the 
spatial information of the samples is mapped, the PSNN 
connectivity is initialised using the small-world-connectivity 
rule (SW) [23].

Unsupervised Learning in the PSNN Model   To learn the 
“deep in time” spatio-temporal relationships between the 
temporal environmental variables, we used an extension 
of Hebbian learning rule, called spike-timing dependent 
plasticity (STDP) [20]. The STDP rule is a neuroscientific 
concept that represented an increase in synaptic efficiency 
which is driven by a presynaptic neuron that repeated stimu-
lation of a postsynaptic neuron. The STDP learning modifies 
the PSNN connectivity according to the relative timing of 
the pre- to post-synaptic spikes. If two neurons i and j are 
connected, wij increases if neuron i fires first and then neu-
ron j within a defined time interval. On the other hand, wij 
decreases if neuron j fires first and then neuron i . It means 
that wij describes the temporal relationship between neuron i 
and j with respect to the time of spiking. In this case, whole 
spatio-temporal associations and patterns across the envi-
ronmental variables, rather than single variable, are learned 
as triggering factors for a stroke event.

Supervised Learning, Classification, and Prediction   When 
the unsupervised learning process with the training sam-
ples is completed, the training samples are used again 
for supervised learning in an output dynamic evolving 
SNN (deSNN) classifier [21]. This procedure learns the 
association between the trained patterns in the PSNN 
model and output class label information (e.g., high risk 
vs low risk). Figure 2c shows the length of the temporal 
environmental samples for training and testing phases. A 
time-window of 7-day (168 h) length (can be adjusted by 
end-users) before the stroke is defined to form the train-
ing dataset which contains several individuals’ samples. 
Then, the 10 environmental features are mapped into a 
3D PSNN model and an unsupervised learning algorithm 
[20] is used to capture the spatio-temporal relationships 
between the features over 7 days in both low-risk and 
high environmental periods (Fig. 2d-left and 2d-right). 
The causal temporal interactions between the 10 envi-
ronmental variables over the selected Te periods of 7 days 
are shown in Fig. 2e which demonstrate how the changes 
in one feature influenced the other features on the fol-
lowing day. The trained PSNN models are later tested 
with a smaller length of the testing samples (not used for 
training) to validate the ability of the system for early 
prediction of stroke occurrence.

Fig. 2   (a) A cluster of similar individuals to individual x in terms 
of clinical data are highlighted in green, referring to those samples 
who are withing a neighborhood radius threshold r around individ-
ual x , where r is an adaptive threshold for every personalized model 
( r = � + � ) which resulted the best accuracy of classification between 
high risk and low risk. (b) An example of the environmental samples 
related to an individual (from the green bars) with 3 features (O3, 
PM10, and PM2.5), where left is a 7-day data (164 h) from “low-risk” 
and right is from “high-risk.” (c) The design of the training and test-
ing datasets for creating PSNN models. The training samples have a 
fixed length (7 days), while the length of the testing samples is chang-
ing from a 7-day period to 1-day period (prior to stroke) to identify  
the best early prediction timepoint for this individual possible stroke 
occurrence. (d) The trained PSNN models with the low-risk environ-
mental period (left) and high-risk environmental period (right). (e) The  
feature interaction networks in the two PSNN models for low-risk and 
high-risk environmental periods

◂
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Study Population and Datasets

Data involved clinical health records from patients (N = 804) 
who had stroke occurrences between 1st March 2011 and 
1st March 2012. There were 382 (47.5%) females with the 
mean age of 71.11 and 422 (52.4%) males with the mean 
age of male = 69.75. Each patient’s data includes 37 static 
features such as age, gender, ethnicity, blood information 
(cholesterol, pressure), stroke history, disease history (dia-
betes, migraine, epilepsy/seizures, etc.), heart disease (heart 
attack, irregular pulse, and failure).

Environmental data were recorded over the same period 
(1st March 2011 to 1st March 2012) by 10 meteorological 
monitors positioned in Auckland city, New Zealand. The 
measures included the following: carbon monoxide (CO), 
nitrogen dioxide (NO2), ozone gas (O3), sulfur dioxide 
(SO2), and particulate matters (PM10 refers to an aerody-
namic diameter smaller than 10 �m and PM2.5 refers to par-
ticles with an aerodynamic diameter smaller than 2.5 �m ), 
temperature (°C), wind-direction average (°),1 wind-speed 

(m/s),2 and solar radiation (W/m2).3 The data were recorded 
on an hourly basis; therefore, 8784-time points were meas-
ured over the 1 year.

Results

To model the differences between the patterns of low and 
high risk of environmental data for each person, personal-
ized models were created separately for 804 individuals from 
the data set. Each PSNN x model of a person x was trained 
in our experiment with a time-window Te of 7-day environ-
mental data of a group of k nearest neighboring individuals 
to this person (selected using WWKNN method) and then 
was tested 7 times using different lengths of the environ-
mental samples from i (testing data length varied from 7-day 
period to 1-day period, prior to stroke occurrence). Figure 3 

Fig. 3   (a) The design of the testing data (environmental time-series 
in our case from 7 days to 1 day of data). (b) The PSNN models dif-
ferentiated the “high-risk environment” vs “low-risk environment” for 
488 individuals when tested with 7 days of environmental data prior to 
stroke occurrence. This indicates that there is an association between 

the 7-day environmental changes and the risk of stroke occurrence for 
a subgroup of 488 individuals in the whole population. The number 
of individuals with the correct prediction of low-risk environmental 
period (risk of stroke) was reduced when the length of the testing envi-
ronmental time-series was shortened from 7 days to 1 day

1  Wind direction is measured in degrees clockwise from due north 
(measured in units from 0° to 360°). Consequently, a wind blowing 
from the north has a wind direction of 0° (360°); a wind blowing 
from the east has a wind direction of 90°; a wind blowing from the 

2  Meters per second.
3  Watts per square meter.

south has a wind direction of 180°, and a wind blowing from the west 
has a wind direction of 270°.

Footnote 1 (continued)
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depicts that when PSNN models were tested with 7-day 
environmental samples prior to the stroke, the high-risk and 
low-risk samples were correctly classified for 488 individu-
als. However, the number of individuals reduced when the 
PSNN models were tested using a smaller time-length (a 
6-day to 1-day period) for prediction of stroke occurrence 
on the 7th day. The findings in Fig. 3 suggest that this sub-
set of 488 individuals’ models showed associations between 
7-day environmental data changes and their risk of stroke, 
forming a subgroup of individuals G . Our hypothesis is that 
every new individual who has similar clinical variables to 
the population G of individuals can benefit from a PSNN 
to predict their stroke risk using 7 days of environmental 
data. For the rest of 804–488=316 individuals, other suitable 
PSNN models should be explored, using a larger window 
Te of environmental data (e.g., 8, 9, 10, …,20 days as sug-
gested in [47]). Here, for each time-window, a separate sub-
group of individuals can be identified that associates their 
clinical variables with the environmental variables during 
this time-window. We have studied what clinical variables 
define the subgroup G of 488 individuals for which 7 days 
of environmental variables can be used to predict their risk, 
in contrast to the rest 316 individuals. This study is impor-
tant for the future applicability of the proposed method in 
clinical practice.

As stated earlier, every PSNN model was tested 7 times 
using different lengths of the environmental period prior to 
the stroke; hence, among these 488 individuals, a subset 
of individuals whose high-risk environmental periods were 
detected correctly in at least 4 rounds out of these 7 test-
ing rounds (e.g., 1,2,3 and 4 days before the stroke) was 
selected as a group of strongly affected patients by current 
environmental changes. This subset represents those indi-
viduals who experienced the effect of causal interactions in 
longitudinal environmental time-series with their personal, 
clinical data that contributed strongly to increasing their risk 
of stroke. As a result, 169 individuals were selected for fur-
ther quantitative analysis of their PSNN models. Therefore, 
the whole 804 individuals were categorized into two groups: 
(1) the affected group (AG) of 169 patients (accurate predic-
tion of at least 1, 2, 3, and 4 days before the stroke) and (2) 
the non-affected group (NAG) of 635 patients.

To identify the between-group differences, we analyze 
the distribution of the patients (in percentage) in the affected 
and non-affected groups with respect to their family health 
history (Fig. 4a) and their personal health history (Fig. 4b). 
Figure 4c represents the differences in the mean value of 
some clinical health features in the AG vs NAG.

Our findings suggest that the risk of stroke in the stud-
ied population was associated with certain environmental 
changes when the individuals belonged to a defined cluster 
of the following clinical risk factors: a family health history 
factors (stroke in family, diabetes in the family; depicted in 

Fig. 4a); personal health history, high cholesterol, vascular/
heart disease (depicted in Fig. 4b); and greater values in age, 
weight, and blood pressure (depicted in Fig. 4c).

To investigate how the interactions between environmen-
tal variables during the chosen time-window of 7 days before 
stroke affected an individual risk of stroke, we built person-
alized models for each of these 169 patients to capture the 
within-group differences of high-risk vs low-risk environ-
mental periods. Here, for every individual x = {1,… , 169} , 
we selected a cluster of patients using the WWKNN method 
concerning their clinical data similarity. The size of the 
selected cluster is different for each of these 169 individu-
als, depending on the density of the similar individuals in 
the neighborhood radius. Figure 5 plots the number of k 
similar samples to each of these 169 individuals, selected 
for building 169 PSNN models. Each created PSNN model 
was trained with two sets of environmental time-series 
(from high-risk and low-risk classes) that belong to the k 
nearest individuals to an individual x . These environmental 
time-series were encoded into spikes to demonstrate certain 
upward and downward changes in the values of environ-
mental features over 7-day periods in both high and low-risk 
intervals.

Figure 6a depicts the average of positive and negative 
spikes derived from the 7-day environmental data in high-
risk samples. This represents that in the high-risk environ-
ment, the values of CO, NO2, O3, SO2, PM10, and PM2.5 have  
been increasing more than decreasing, therefore, generat-
ing more positive spikes than negative. On the other hand, 
the values of temperature, wind-speed, wind-direction, 
and solar radiation, which are inter-related climatic condi-
tions, have been decreasing more than increasing. These 
patterns demonstrate the associated environmental changes 
over 7 days before stroke occurrence that influenced the 
risk of stroke for these 169 affected patients in Auckland 
in 2011–2012. Except for O3, the mentioned pollutants 
are mainly generated because of burning fossil fuels. The 
presence of NO2 and SO2 together with water and oxygen 
will result in the production of nitric, nitrous, and sulfu-
ric acids. Particulate matters (PM), especially PM2.5, due 
to their small size can penetrate the lungs, which triggers 
respiratory diseases [48]. These particles can also enter 
the blood circulation system that may lead to chronic dis-
eases and cause vascular inflammation and hardening of 
arteries that may result in ischemic stroke or heart attack 
[49–51]. Our findings in Fig. 6a are in alignment with the 
literature that suggested PM2.5 as a risk factor of stroke 
occurrence [49, 52]. Figure 6a also reported an association 
between the ozone (O3) increase and the high-risk period 
of stroke occurrence. Ozone sis an allotrope of oxygen that 
can be generated by short wavelengths of the ultraviolet 
spectrum, particularly UV-C (200–280 nm) and vacuum 
UV (100–200 nm) [53]. Ozone was seen to alter blood 
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coagulation mechanism and cause irregular heart rate and 
systemic inflammatory responses [54, 55] and hence was 
reported in the literature to be in association with stroke 
occurrences [56, 57].

The encoded spikes from 7-day environmental data were 
used as input data for training PSNN models. The environ-
mental features were mapped into a 3D PSNN model that 
topologically preserves the temporal differences of the data 
features. This is performed by computing the correlation 
between the spike trains of all the 10 environmental features. 

The most correlated features are mapped to closer input neu-
rons inside the PSNN.

For each of the 169 individuals in the affected group, we 
developed two separate PSNN models to map and model 
the temporal environmental changes of the high- and low-
risk periods and study the differences. The PSNN models 
were spatially mapped into the 3D space of spiking neurons 
and trained environmental time-series. The mapped PSNN 
models learned the temporal associations “hidden” between 
the environmental features during the unsupervised STDP 

Fig. 4   Clinical records of patients in two groups: affected vs non-
affected groups by environmental changes. (a) The number of indi-
viduals with a history of health issues in their family records shows 
that the most of them had family members who had a stroke in the 
past; (b) the number of individuals with history of a health issues in 
their personal, clinical records shows a higher level of cholesterol, 

diabetes, vascular/heart disease, comorbidity, serous full, and medi-
cation for the affected group; (c) the mean value of the last meas-
ured personal, clinical health variables show a greater values in fea-
tures age (over 65), weight, systolic blood pressure (over 155  mm 
of mercury—mmHg), and diastolic blood pressure (over 80 mmHg) 
for the affected group

Cognitive Computation (2022) 14:2187–22022194
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learning algorithm [20] while learning from 7-day data. Fig-
ure 6b shows the level of causal interactions that each envi-
ronmental feature has with other features during the 7 days, 
averaged across all the 169 PSNN models in high risk (red) 
vs low risk (blue). This shows a greater causal interaction in 
high-risk than the low-risk period reflecting the associated 
environmental risk factors.

When the PSNN models are learning from environmental 
data using the unsupervised STDP learning algorithm [20], 
the spatio-temporal relationships between the features are 
formed as weighted connections.

Figure 7 illustrates the absolute value of positive and neg-
ative connection weights in the PSNN models of 169 indi-
viduals, trained by high-risk (in a) and low-risk (in b) envi-
ronmental data. By comparing Fig. 7a and b, the absolute 

value of connections is higher in the high-risk period than in 
the low-risk period. It may suggest that frequent fluctuations 
in environmental features might be considered as external 
risk factors to increase the risk of stroke occurrence. For 
statistical analysis, we extracted the quantitative information 
of the connection weights from 169 patients’ PSNN models 
of high-risk and low-risk environments and used ANOVA to 
measure the t-test p-values as reported in Table 1.

Personalized Profiling of Individual Risk of Stroke 
Using Environmental Data

The study of interactions among environmental variables 
over time, related to personal data before stroke occurrence, 
is a challenging task as several variables can influence the 

Fig. 5   For each of the personalized models of individuals x = {1, .., 169}

(shown on the y-axis), k neighboring samples selected with respect to a 
neighborhood radius r which is an adaptive threshold ( r = � + � ) and is 

a different value for each personalized model. This led to select an opti-
mal value for k in each personalized model (k is shown on the x-axis) and 
on average, k = 57.5
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other ones, either directly or indirectly. Here, the proposed 
personalized modeling method and system offered a capable 
and explicable profile of an individual to explain the rela-
tionships between environmental variables that potentially 

increased an individual’s risk of stroke for a person or a 
group of persons. Using the proposed PSNN method and 
system, we can create a personalized profile for each person 
that results in an improved understanding of personal factors 

Fig. 6   (a) The number of positive and negative spikes (mean values) 
related to the increases and decreases in environmental time-series for 
the high-risk period, averaged across all the 169 individuals. (b) The 

level of influence (causal relationship) that one variable has on the 
others over 7 days of high-risk (in orange color) and low-risk (in blue 
color)

Fig. 7   The sum absolute value of positive and negative connection weights in each of the trained PSNN models (for 169 patients) in high risk 
(red) vs low risk (blue)
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that increased the risk of stroke. Figure 8a represents the 
PSNN models (trained by high-risk and low-risk environ-
mental time-series) of a 21-year-old (female) patient who 
had a stroke on 18 Nov 2011 in Auckland, NZ. The PSNN 
models demonstrated that the spatio-temporal relationships 
between the environmental variables are different in high-
risk vs low-risk environments for this patient with the fol-
lowing conditions: epilepsy, head injury, migraine, and fam-
ily history of heart attack, hypertension, and diabetes.

The amount of spatio-temporal interactions between these 
environmental variables (shown in Fig. 8a) is measured by a 
feature interaction network (FIN) graph, illustrated in Fig. 8b. 
For this patient, the FIN graph of high risk represents large 
interactions between variables NO2, wind-direction, and 
PM2.5; variables PM10 and PM2.5; and variables O3, solar, 
SO2, and temperature which explain how the changes in some 
features influenced the changes in other features over 7 days 
before the stroke. On the other hand, different level of interac-
tion was measured in the low-risk environmental period for 
this patient. These findings are personalized and can be dif-
ferent for another patient, suggesting that the proposed PSNN 
modeling is a promising approach of capturing individual 
characteristics that can potentially lead to customization of 
healthcare, decision-making, treatments, and practices as the 
models are being tailored to individual information.

Figure 8c shows that the data from high-risk and low-
risk environmental periods demonstrated different activated 
areas (shown in %) around each environmental feature in 
the PSNN models. A larger activated area around an envi-
ronmental feature refers to stronger influential changes 
in the value of this feature during the 7 days of high-risk 
(Fig. 8c-left) and low-risk (Fig. 8c-right) environments. This 
refers to important environmental markers in increasing the 
risk of stroke occurrence for an individual.

Figure 9 presents the personalized profiles of another two 
randomly selected patients from two clusters of subjects 
with the following information: age > 70, a family history 
of stroke, high cholesterol, diabetes, vascular/heart disease. 
These patients had a stroke on 21 Apr 2011 and 30 Jan 2012 
respectively in Auckland, NZ. The models were separately 
trained with 7-day data of high-risk environmental periods 
related to KNN individuals to these patients. The right-side 
graphs show the temporal/causal interactions between the 
environmental features as important measurements for the 
identification of environmental changes that influenced the 
risk of stroke.

Figure 9a demonstrates great interactions between PM10 
and PM2.5 and NO2, also, between the temperature, solar, 
and wind-speed during the 7 days in the high-risk period. 
Figure 9b illustrates great interactions between PM10 and 
PM2.5, also, between the temperature, solar, and O3 during 
the 7 days in the high-risk period.

Discussion

The findings, obtained with the use of the prosed personal-
ized modeling methodology, suggest an association between 
the occurrence of stroke and changes of environmental fac-
tors over 7-day period prior to the stroke event in a group  
of individuals with particular characteristics, the so-called 
an affected group (AG) for this time-window period. These 
individuals have the following demographic and clinical risk 
factors: a family history of stroke diabetes and hypertension 
(depicted in Fig. 4a); a personal history of a high level of 
cholesterol, diabetes, obtained with the proposed vascular/
heart disease, serious fall (depicted in Fig. 4b); older age 
(over 65); and overweight and obesity (depicted in Fig. 4c). 
The difference in distribution by gender suggests the effects 
of environmental changes were 10% more noticeable on 
males than females. Participants in the AG were older; how-
ever, females and males in the AG were of similar ages. For 
an individual in the AG with the aforementioned factors, 
the risk of stroke was increased by certain patterns of 7-day 
environmental changes (prior to stroke onset) that includes 
increment in CO, NO2, O3, SO2, PM10, and PM2.5, and decre-
ment in wind-speed, temperature, and solar. Our findings in 
Fig. 6 imply greater interactions between the environmental 
features in a high-risk period (the 7 days before the stroke 
occurrence) than a low-risk period (the 7-day period posi-
tioned at 2 months prior to the stroke event). This indicates  
that there were causal relationships between changes in the 
values of environmental features during the 7-day period  
that increased the risk of stroke.

Hitherto, numerous studies have been undertaken to 
explore clinical risk factors of stroke [4, 58, 59]. However, 
little research has been conducted to analyze the effects of 
environmental factors on stroke occurrence [13]. Some stud-
ies to date discovered associations between some seasonal 
environmental patterns and stroke incidences [9–13]. For 
instance, the rate of stroke occurrence appeared to be diverse 
as a function of environmental temperature [14, 15]. Some 
studies in China revealed the associations between stroke 

Table 1   A t-test p-value demonstrates the significant difference 
between the level of interactions for each environmental variable 
across 169 patients’ models in high risk vs low risk. Variables SO2 

and PM10 have shown the lowest p-values followed by CO and PM2.5 
variables, representing the most important variables for discriminat-
ing the two groups

 Variables CO NO2 O3 SO2 PM10 PM2.5 Temperature Wind-Dir Wind-Speed Solar

t-test p value 0.0002 0.5 0.001 3.10E-18 2.20E-10 0.009 0.001 0.0017 0.07 0.3
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incidence and elevated NO2, SO2, and O3 [6, 7]. A study in 
the USA discovered the relationships between stroke preva-
lence and exposure of PM2.5 and O3, advocating that further 
investigation on the association of pollution and stroke is 
vital [8].

Although the aforesaid studies have investigated a link 
between stroke occurrence and some environmental factors, 
the relationship between personal, clinical health variables, 
and certain environmental changes over time is not yet well 

Fig. 8   (a) PSNN models were trained by 7-day environmental data 
in high-risk and low-risk periods for one randomly selected patient 
(21-year-old (female) who had a stroke on 18 Nov 2011 in Auckland, 
NZ) and had the following conditions: epilepsy, head injury, migraine 
and family history of heart attack, hypertension, diabetes. (b) Feature 
interaction network (FIN) shows the level of interactions between 
environmental features during the 7 days. (c) Percentage of the acti-
vated neurons in PSNN models presenting environmental variables 
is indicating the importance of these variables for stroke prediction 
within the cluster of patients closer to the selected individual

◂

Fig. 9   Personalized profiling of two patients who had a stroke on (a) 
29/Apr/2011 and (b) 30 Jan 2012 in Auckland, NZ, belonging to two 
clusters of subjects with the following information: age > 70, family 
history of stroke, high cholesterol, diabetes, vascular/heart disease; 
(left) PSNN connectivity trained with high-risk environmental data 

(encoded spikes from 7-day data). (Right) Feature interaction network 
shows the interactions between environmental features over 7  days, 
where the nodes represent the features, and the thickness of the lines 
shows the amount of information exchanged between them over time
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investigated. The current study is an advancement on the 
existing predictive models of stroke by combining different 
data modalities for modeling complex interactions of risk 
factors. The personalized profiles of patients improved the 
models’ interpretability so that an end-user (e.g., a medi-
cal practitioner) can comprehend what interactions between 
the environmental features have mostly increased the risk of 
stroke for an individual. It depicts a new avenue for practical 
implications of these findings and clinical use if the pro-
posed algorithm will be fully tested, proved its robustness 
and accuracy, linked with the actual weather forecast, and 
shared as a usable device (e.g., a mobile app) with clini-
cians and family members of people with a higher risk of 
stroke for personalized prediction of stroke events. It will 
facilitate discussions with those at higher personalized risk 
of developing stroke within the next 7 days while they still 
retain the capacity to reduce the risk, regarding undertak-
ing certain protective measures, such as escaping from a 
region where the determined environmental changes provoke 
stroke occurrence and moving closer to medical facilities, 
which would allow patients and families to receive medical 
care at an earlier stage in the disease process, and leading to 
improved prognosis and decreased morbidity and mortality.

Conclusion

The proposed personalized method and system allow 
for modeling and discovery of the relationship between 
personal health variables and environmental changes 
over several days (7 days) to estimate a probable risk 
of stroke. This system is built upon a cognitive-based 
computational architecture of spiking neural networks 
constituted of several methods in a pipeline that includes 
clustering of patients according to their personal data; 
developing personalized models of environmental time-
series prior to the day of predicted risk of stroke event; 
classifying and predicting the high-risk environmen-
tal period; 3D visualization of models; and interpreta-
tion and knowledge discovery at an individual and a 
cluster-based approach. The personalized modeling 
approach and the developed machine learning algorithms  
can be used on other data, related to different popula-
tions, environmental, and clinical variables. In principle,  
the method can be used and tested on other time-windows 
of environmental data rather than the 7-day period used 
here as an example, to check if changes of environmental  
and other factors in any other timeframe can serve as risk 
factors for stroke.

Future work will include extracting spatio-temporal 
symbolic rules that represent the discovered associations 
between clinical and environmental variables for groups 
of individuals at high risk [23–25].
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