Tuberculosis and Pulmonary Co-Infections: Clinical Profiles and Management Strategies

Main Article Content

Ilham Zaidi Jagadeeswari Vardha Abdul khayum Sahifa Anjum Shikhar Chaudhary Aditi Bakshi Jasmeen Kaur Gill Jaiprakash Gurav

Abstract

Tuberculosis (TB) along with pulmonary co-infections in patients became a grave concern to public health complicating the disease diagnosis, treatment, and prognosis. It became a challenge to healthcare professionals urging to develop new diagnostic tools and treatment regimens. This paper reviews the complex interplay and management strategies for Tuberculosis patients with co-infections. It encompasses antimicrobial therapy tailored to particular pathogens, including their susceptibility profiles to antibiotics, and understanding the potential implications of drug interactions with anti- Tuberculosis medications. In cases of co-infection between Tuberculosis and Human Immuno-Deficiency Virus (HIV), a particular focus is placed on the significance of synergistic methods and treatment duration.


Moreover, immunomodulatory drugs, immunotherapies, cellular treatments, adjunct therapies, and immunomodulatory agents that are customised to the patient's immunological status and co-infecting pathogens emerge as a crucial component. Mitigating the transmission of pulmonary co-infections requires the implementation of infection control measures in both healthcare settings and communities. A strong barrier against the spread of tuberculosis and related illnesses is formed by administrative, engineering, and personal protective measures combined with screening, education, isolation, and contact tracking.


Prospective approaches underscore the necessity for enhanced diagnostic instruments, promoting cutting-edge technologies including molecular diagnostics, immunological tests, radiological imaging, biosensors, and point-of-care diagnostics. Comprehensive management is emphasised through multidisciplinary care comprising pulmonologists, infectious disease experts, microbiologists, and immunologists. Priorities for research include combination medications, new therapeutic approaches, personalised medicine, and developing diagnostic techniques to improve knowledge of and treatments for pulmonary co-infections.

Article Details

How to Cite
ZAIDI, Ilham et al. Tuberculosis and Pulmonary Co-Infections: Clinical Profiles and Management Strategies. Medical Research Archives, [S.l.], v. 11, n. 12, dec. 2023. ISSN 2375-1924. Available at: <https://esmed.org/MRA/mra/article/view/4897>. Date accessed: 05 may 2024. doi: https://doi.org/10.18103/mra.v11i12.4897.
Section
Review Articles

References

1. Global Tuberculosis Report s. Accessed November 7, 2023.
https://www.who.int/teams/global-tuberculosis-programme/tb-reports

2. Stojanovic Z, Gonçalves-Carvalho F, Marín A, et al. Advances in diagnostic tools for respiratory tract infections: from tuberculosis to COVID-19 - changing paradigms? ERJ Open Res. 2022;8(3):00113-02022. doi:10.1183/23120541.00113-2022

3. Jones BE, Young SM, Antoniskis D, Davidson PT, Kramer F, Barnes PF. Relationship of the manifestations of tuberculosis to CD4 cell counts in patients with human immunodeficiency virus infection. Am Rev Respir Dis. 1993;148(5):1292-1297. doi:10.1164/ajrccm/148.5.1292

4. Changes in Mycobacterium tuberculosis-Specific Immunity With Influenza co-infection at Time of TB Diagnosis - PMC. Accessed November 14, 2023.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6328457/

5. Liebenberg D, Gordhan BG, Kana BD. Drug resistant tuberculosis: Implications for transmission, diagnosis, and disease management. Front Cell Infect Microbiol. 2022;12. Accessed November 7, 2023. https://www.frontiersin.org/articles/10.3389/fcimb.2022.943545

6. Silva E, Hino P, Fernandes H, Bertolozi M, Monroe A, Fornari L. Health care for people with tuberculosis/HIV co-infection from the multidisciplinary team’s perspective. Rev Bras Enferm. 2023;76. doi:10.1590/0034-7167-2022-0733

7. Hargreaves JR, Boccia D, Evans CA, Adato M, Petticrew M, Porter JDH. The social determinants of tuberculosis: from evidence to action. Am J Public Health. 2011;101(4):654-662. doi:10.2105/AJPH.2010.199505

8. Lönnroth K, Jaramillo E, Williams BG, Dye C, Raviglione M. Drivers of tuberculosis epidemics: The role of risk factors and social determinants. Soc Sci Med. 2009;68(12):2240-2246. doi:10.1016/j.socscimed.2009.03.041

9. Silva DR, Muñoz-Torrico M, Duarte R, et al. Risk factors for tuberculosis: diabetes, smoking, alcohol use, and the use of other drugs. J Bras Pneumol Publicacao Of Soc Bras Pneumol E Tisilogia. 2018;44(2):145-152. doi:10.1590/s1806-37562017000000443

10. Tubercular and bacterial coinfection: A case series - PubMed. Accessed November 7, 2023. https://pubmed.ncbi.nlm.nih.gov/25814806/

11. Es S. Prevalence of Streptococcus Pneumoniae and Mycobacterium Tuberculosis Co-Infection among HIV Infected Adult Patients on HAART in Ogun State, Nigeria. doi:10.23937/2469-567X/1510048

12. Attia EF, Pho Y, Nhem S, et al. Tuberculosis and other bacterial co-infection in Cambodia: a single center retrospective cross-sectional study. BMC Pulm Med. 2019;19(1):60. doi:10.1186/s12890-019-0828-4

13. Acute lower respiratory infections on lung sequelae in Cambodia, a neglected disease in highly tuberculosis-endemic country - ScienceDirect. Accessed November 7, 2023. https://www.sciencedirect.com/science/article/pii/S0954611113002710

14. Giri PA, Deshpande JD, Phalke DB. Prevalence of Pulmonary Tuberculosis Among HIV Positive Patients Attending Antiretroviral Therapy Clinic. North Am J Med Sci. 2013;5(6):367-370.
doi:10.4103/1947-2714.114169

15. Bell LCK, Noursadeghi M. Pathogenesis of HIV-1 and Mycobacterium tuberculosis co-infection. Nat Rev Microbiol. 2018;16(2):80-90. doi:10.1038/nrmicro.2017.128

16. Yang Q, Han J, Shen J, Peng X, Zhou L, Yin X. Diagnosis and treatment of tuberculosis in adults with HIV. Medicine (Baltimore). 2022;101(35):e30405. doi:10.1097/MD.0000000000030405

17. Bates M, Mudenda V, Shibemba A, et al. Burden of tuberculosis at post mortem in inpatients at a tertiary referral centre in sub-Saharan Africa: a prospective descriptive autopsy study. Lancet Infect Dis. 2015;15(5):544-551. doi:10.1016/S1473-3099(15)70058-7

18. Cattamanchi A, Smith R, Steingart KR, et al. Interferon-gamma release assays for the diagnosis of latent tuberculosis infection in HIV-infected individuals: a systematic review and meta-analysis. J Acquir Immune Defic Syndr 1999. 2011;56(3):230-238. doi:10.1097/QAI.0b013e31820b07ab

19. Aabye MG, Ravn P, PrayGod G, et al. The impact of HIV infection and CD4 cell count on the performance of an interferon gamma release assay in patients with pulmonary tuberculosis. PloS One. 2009;4(1):e4220. doi:10.1371/journal.pone.0004220

20. Yoon C, Semitala FC, Atuhumuza E, et al. Point-of-care C-reactive protein-based tuberculosis screening for people living with HIV: a diagnostic accuracy study. Lancet Infect Dis. 2017;17(12):1285-1292.
doi:10.1016/S1473-3099(17)30488-7

21. Shapiro AE, Hong T, Govere S, et al. C-reactive protein as a screening test for HIV-associated pulmonary tuberculosis prior to antiretroviral therapy in South Africa. AIDS Lond Engl. 2018;32(13):1811-1820. doi:10.1097/QAD.0000000000001902

22. Lawn SD, Kerkhoff AD, Vogt M, Wood R. Diagnostic and prognostic value of serum C-reactive protein for screening for HIV-associated tuberculosis. Int J Tuberc Lung Dis Off J Int Union Tuberc Lung Dis. 2013;17(5):636-643. doi:10.5588/ijtld.12.0811

23. Lawn SD. Point-of-care detection of lipoarabinomannan (LAM) in urine for diagnosis of HIV-associated tuberculosis: a state of the art review. BMC Infect Dis. 2012;12(1):103. doi:10.1186/1471-2334-12-103

24. Mthiyane T, Peter J, Allen J, et al. Urine lipoarabinomannan (LAM) and antimicrobial usage in seriously-ill HIV-infected patients with sputum smear-negative pulmonary tuberculosis. J Thorac Dis. 2019;11(8):3505-3514. doi:10.21037/jtd.2019.07.69

25. Hoffmann CJ, Variava E, Rakgokong M, et al. High prevalence of pulmonary tuberculosis but low sensitivity of symptom screening among HIV-infected pregnant women in South Africa. PloS One. 2013;8(4):e62211. doi:10.1371/journal.pone.0062211

26. Al-Darraji HAA, Abd Razak H, Ng KP, Altice FL, Kamarulzaman A. The diagnostic performance of a single GeneXpert MTB/RIF assay in an intensified tuberculosis case finding survey among HIV-infected prisoners in Malaysia. PloS One. 2013;8(9):e73717. doi:10.1371/journal.pone.0073717

27. Bahr NC, Nuwagira E, Evans EE, et al. Diagnostic accuracy of Xpert MTB/RIF Ultra for tuberculous meningitis in HIV-infected adults: a prospective cohort study. Lancet Infect Dis. 2018;18(1):68-75.
doi:10.1016/S1473-3099(17)30474-7

28. Zhao J, Chang L, Wang L. Nucleic acid testing and molecular characterization of HIV infections. Eur J Clin Microbiol Infect Dis. 2019;38(5):829-842. doi:10.1007/s10096-019-03515-0

29. Update on the use of nucleic acid amplification tests to detect TB and drug-resistant TB: rapid communication. Accessed November 7, 2023.
https://www.who.int/publications-detail-redirect/9789240020269

30. Park SY, Goeken N, Lee HJ, Bolan R, Dubé MP, Lee HY. Developing high-throughput HIV incidence assay with pyrosequencing platform. J Virol. 2014;88(5):2977-2990. doi:10.1128/JVI.03128-13

31. Guerra-Assunção JA, Houben RMGJ, Crampin AC, et al. Recurrence due to relapse or reinfection with Mycobacterium tuberculosis: a whole-genome sequencing approach in a large, population-based cohort with a high HIV infection prevalence and active follow-up. J Infect Dis. 2015;211(7):1154-1163. doi:10.1093/infdis/jiu574

32. Metagenomic Next-Generation Sequencing (mNGS) in cerebrospinal fluid for rapid diagnosis of Tuberculosis meningitis in HIV-negative population - ScienceDirect. Accessed November 7, 2023. https://www.sciencedirect.com/science/article/pii/S1201971220302642

33. Olbrich L, Stockdale L, Basu Roy R, et al. Understanding the interaction between cytomegalovirus and tuberculosis in children: The way forward. PLoS Pathog. 2021;17(12):e1010061. doi:10.1371/journal.ppat.1010061

34. Rabie H, Frigati LJ, Nkosi N. Cytomegalovirus and tuberculosis disease in children. Lancet Glob Health. 2021;9(12): e1636-e1637. doi:10.1016/S2214-109X(21)00466-6

35. Invasive Aspergillosis | Clinical Infectious Diseases | Oxford Academic. Accessed November 7, 2023.
https://academic.oup.com/cid/article/26/4/781/415361?login=false

36. Hosseini M, Shakerimoghaddam A, Ghazalibina M, Khaledi A. Aspergillus coinfection among patients with pulmonary tuberculosis in Asia and Africa countries; A systematic review and meta-analysis of cross-sectional studies. Microb Pathog. 2020;141:104018. doi:10.1016/j.micpath.2020.104018

37. Rutakingirwa MK, Cresswell FV, Kwizera R, et al. Tuberculosis in HIV-Associated Cryptococcal Meningitis is Associated with an Increased Risk of Death. J Clin Med. 2020;9(3):781. doi:10.3390/jcm9030781

38. Lyles G, Ogarkov O, Zhdanova S, et al. Pharmacokinetics of tuberculosis drugs in HIV-infected patients from Irkutsk, Russian Federation: redefining drug activity. Eur Respir J. 2018;51(5):1800109. doi:10.1183/13993003.00109-2018

39. Heidary M, Shirani M, Moradi M, et al. Tuberculosis challenges: Resistance, co-infection, diagnosis, and treatment. Eur J Microbiol Immunol. 2022;12(1):1-17. doi:10.1556/1886.2021.00021

40. Young C, Walzl G, Du Plessis N. Therapeutic host-directed strategies to improve outcome in tuberculosis. Mucosal Immunol. 2020;13(2):190-204.
doi:10.1038/s41385-019-0226-5

41. The Sanford Guide to Antimicrobial Therapy 2022, 52e (Jan 1, 2022) (1944272208)_(Antimicrobial Therapy, Inc.) - Anna’s Archive. Accessed November 7, 2023. https://annas-archive.org/md5/e52ff284d53e41f59cfd1c071246eac4

42. Streptococcus pneumoniae | Johns Hopkins ABX Guide. Accessed November 7, 2023. https://www.hopkinsguides.com/hopkins/view/Johns_Hopkins_ABX_Guide/540523/all/Streptococcus_pneumoniae?refer=true

43. Haemophilus species | Johns Hopkins ABX Guide. Accessed November 7, 2023. https://www.hopkinsguides.com/hopkins/view/Johns_Hopkins_ABX_Guide/540253/all/Haemophilus_species?refer=true

44. Walaza S, Cohen C, Tempia S, et al. Influenza and tuberculosis co-infection: A systematic review. Influenza Other Respir Viruses. 2020;14(1):77-91. doi:10.1111/irv.12670

45. Influenza | Johns Hopkins ABX Guide. Accessed November 7, 2023. https://www.hopkinsguides.com/hopkins/view/Johns_Hopkins_ABX_Guide/540285/all/Influenza?refer=true

46. Cytomegalovirus | Johns Hopkins ABX Guide. Accessed November 7, 2023. https://www.hopkinsguides.com/hopkins/view/Johns_Hopkins_ABX_Guide/540153/all/Cytomegalovirus?refer=true

47. Tuberculosis Status and Coinfection of Pulmonary Fungal Infections in Patients Referred to Reference Laboratory of Health Centers Ghaemshahr City during 2007-2017 - PubMed. Accessed November 7, 2023. https://pubmed.ncbi.nlm.nih.gov/30607084/

48. Aspergillus | Johns Hopkins ABX Guide. Accessed November 7, 2023. https://www.hopkinsguides.com/hopkins/view/Johns_Hopkins_ABX_Guide/540036/all/Aspergillus?refer=true

49. Tuberculosis and Nontuberculous Mycobacterial Infections | Wiley Online Books. Accessed November 8, 2023. https://onlinelibrary.wiley.com/doi/book/10.1128/9781555817138

50. Empirical treatment of tuberculosis: TB or not TB? - PubMed. Accessed November 8, 2023. https://pubmed.ncbi.nlm.nih.gov/29991543/

51. Silvério D, Gonçalves R, Appelberg R, Saraiva M. Advances on the Role and Applications of Interleukin-1 in Tuberculosis. mBio. 2021;12. doi:10.1128/mBio.03134-21

52. Yew WW. Clinically significant interactions with drugs used in the treatment of tuberculosis. Drug Saf. 2002;25(2):111-133. doi:10.2165/00002018-200225020-00005

53. Kerantzas CA, Jacobs WR. Origins of Combination Therapy for Tuberculosis: Lessons for Future Antimicrobial Development and Application. mBio. 2017;8(2):e01586-16. doi:10.1128/mBio.01586-16

54. Global Tuberculosis Report 2022. Accessed November 8, 2023. https://www.who.int/teams/global-tuberculosis-programme/tb-reports/global-tuberculosis-report-2022

55. Zaidi I, Sarma PS, Umer Khayyam K, toufique Ahmad Q, Ramankutty V, Singh G. Factors associated with treatment adherence among pulmonary tuberculosis patients in New Delhi. Indian J Tuberc. Published online August 11, 2023.
doi:10.1016/j.ijtb.2023.08.006

56. Manosuthi W, Wiboonchutikul S, Sungkanuparph S. Integrated therapy for HIV and tuberculosis. AIDS Res Ther. 2016;13(1):22. doi:10.1186/s12981-016-0106-y

57. Modulation of the immune response to Mycobacterium tuberculosis during malaria/M. tuberculosis co-infection | Clinical and Experimental Immunology | Oxford Academic. Accessed November 8, 2023. https://academic.oup.com/cei/article/187/2/259/6412028

58. Williams DM. Clinical Pharmacology of Corticosteroids. Respir Care. 2018;63(6):655-670. doi:10.4187/respcare.06314

59. Narendran G, Swaminathan S. TB–HIV co-infection: a catastrophic comradeship. Oral Dis. 2016;22(S1):46-52. doi:10.1111/odi.12389

60. Schutz C, Davis AG, Sossen B, et al. Corticosteroids as an adjunct to tuberculosis therapy. Expert Rev Respir Med. 2018;12(10):881-891. doi:10.1080/17476348.2018.1515628

61. Roy E, Stavropoulos E, Brennan J, et al. Therapeutic efficacy of high-dose intravenous immunoglobulin in Mycobacterium tuberculosis infection in mice. Infect Immun. 2005;73(9):6101-6109. doi:10.1128/IAI.73.9.6101-6109.2005

62. Adjunct Immunotherapies for Tuberculosis | The Journal of Infectious Diseases | Oxford Academic. Accessed November 8, 2023.
https://academic.oup.com/jid/article/205/suppl_2/S325/808922?login=false

63. Olivares N, Rodriguez Y, Zatarain-Barron ZL, et al. A significant therapeutic effect of immunoglobulins administered alone, or in combination with conventional chemotherapy, in experimental pulmonary tuberculosis caused by drug-sensitive or drug-resistant strains. Pathog Dis. 2017;75(9). doi:10.1093/femspd/ftx118

64. van Arkel C, Boeree M, Magis-Escurra C, et al. Interleukin-1 receptor antagonist anakinra as treatment for paradoxical responses in HIV-negative tuberculosis patients: A case series. Med N Y N. 2022;3(9):603-611.e2. doi:10.1016/j.medj.2022.07.001

65. Mootoo A, Stylianou E, Arias MA, Reljic R. TNF-alpha in tuberculosis: a cytokine with a split personality. Inflamm Allergy Drug Targets. 2009;8(1):53-62. doi:10.2174/187152809787582543

66. Godfrey MS, Friedman LN. Tuberculosis and Biologic Therapies: Anti-Tumor Necrosis Factor-α and Beyond. Clin Chest Med. 2019;40(4):721-739. doi:10.1016/j.ccm.2019.07.003

67. TB and TNF - Mississippi State Department of Health. Accessed November 8, 2023.
https://msdh.ms.gov/page/14,0,125,778.html

68. Balu S, Reljic R, Lewis MJ, et al. A novel human IgA monoclonal antibody protects against tuberculosis. J Immunol Baltim Md 1950. 2011;186(5):3113-3119.
doi:10.4049/jimmunol.1003189

69. Umbreen G, Rehman A, Avais M, et al. Burden of influenza A (H1N1)pdm09 infection among tuberculosis patients: a prospective cohort study. BMC Infect Dis. 2023;23(1):526. doi:10.1186/s12879-023-08441-3

70. Cellular therapy in Tuberculosis - ScienceDirect. Accessed November 8, 2023. https://www.sciencedirect.com/science/article/pii/S1201971215000223

71. T-Cell Therapy: Options for Infectious Diseases | Clinical Infectious Diseases | Oxford Academic. Accessed November 8, 2023. https://academic.oup.com/cid/article/61/suppl_3/S217/356294?login=false

72. Viral Infections in HSCT: Detection, Monitoring, Clinical Management, and Immunologic Implications - PubMed. Accessed November 8, 2023. https://pubmed.ncbi.nlm.nih.gov/33552044/

73. Yang A, Shi J, Luo Y, et al. Allo-HSCT recipients with invasive fungal disease and ongoing immunosuppression have a high risk for developing tuberculosis. Sci Rep. 2019;9(1):20402. doi:10.1038/s41598-019-56013-w

74. The critically ill patient with tuberculosis in intensive care: Clinical presentations, management and infection control - PubMed. Accessed November 8, 2023. https://pubmed.ncbi.nlm.nih.gov/29571116/

75. Nardell EA. Transmission and Institutional Infection Control of Tuberculosis. Cold Spring Harb Perspect Med. 2015;6(2):a018192. doi:10.1101/cshperspect.a018192

76. Chapman HJ, Veras-Estévez BA. Lessons Learned During the COVID-19 Pandemic to Strengthen TB Infection Control: A Rapid Review. Glob Health Sci Pract. 2021;9(4):964-977. doi:10.9745/GHSP-D-21-00368

77. World Health Organization. WHO Guidelines on Tuberculosis Infection Prevention and Control: 2019 Update. World Health Organization; 2019. Accessed November 8, 2023. https://iris.who.int/handle/10665/311259

78. Effectiveness of contact tracing in the control of infectious diseases: a systematic review - The Lancet Public Health. Accessed November 8, 2023.
https://www.thelancet.com/journals/lanpub/article/PIIS2468-2667(22)00001-9/fulltext

79. Boehme CC, Nabeta P, Hillemann D, et al. Rapid Molecular Detection of Tuberculosis and Rifampin Resistance. N Engl J Med. 2010;363(11):1005-1015. doi:10.1056/NEJMoa0907847

80. Pai M, Behr MA, Dowdy D, et al. Tuberculosis. Nat Rev Dis Primer. 2016;2(1):1-23. doi:10.1038/nrdp.2016.76

81. Mokrousov I, Chernyaeva E, Vyazovaya A, Sinkov V, Zhuravlev V, Narvskaya O. Next-Generation Sequencing of Mycobacterium tuberculosis. Emerg Infect Dis. 2016;22(6):1127-1129. doi:10.3201/eid2206.152051

82. Fact sheets. Accessed November 8, 2023. https://www.who.int/news-room/fact-sheets

83. Whelan C, Shuralev E, O’Keeffe G, et al. Multiplex immunoassay for serological diagnosis of Mycobacterium bovis infection in cattle. Clin Vaccine Immunol CVI. 2008;15(12):1834-1838. doi:10.1128/CVI.00238-08

84. Seith Bhalla A, Goyal A, Guleria R, Kumar A. Chest tuberculosis: Radiological review and imaging recommendations. Indian J Radiol Imaging. 2015;25:213-225.
doi:10.4103/0971-3026.161431

85. Zhou L, He X, He D, Wang K, Qin D. Biosensing technologies for Mycobacterium tuberculosis detection: status and new developments. Clin Dev Immunol. 2011;2011:193963. doi:10.1155/2011/193963

86. Hong JM, Lee H, Menon NV, Lim CT, Lee LP, Ong CWM. Point-of-care diagnostic tests for tuberculosis disease. Sci Transl Med. 2022;14(639):eabj4124. doi:10.1126/scitranslmed.abj4124

87. Recommendations for Use of an Isoniazid-Rifapentine Regimen with Direct Observation to Treat Latent Mycobacterium tuberculosis Infection. Accessed November 9, 2023. https://www.cdc.gov/mmwr/preview/mmwrhtml/mm6048a3.htm

88. Nathan C, Barry CE. TB drug development: immunology at the table. Immunol Rev. 2015;264(1):308-318. doi:10.1111/imr.12275

89. Mirza AA, Rad EJ, Mohabir PK. Cystic fibrosis and COVID-19: Care considerations. Respir Med Case Rep. 2020;31:101226. doi:10.1016/j.rmcr.2020.101226