Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Amygdala levels of the GluA1 subunit of glutamate receptors and its phosphorylation state at serine 845 in the anterior hippocampus are biomarkers of ictal fear but not anxiety

Abstract

Fear is a conscious state caused by exposure to real or imagined threats that trigger stress responses that affect the body and brain, particularly limbic structures. A sub-group of patients with mesial temporal lobe epilepsy related to hippocampus sclerosis (MTLE-HS) have seizures with fear, which is called ictal fear (IF), due to epileptic activity within the brain defensive survival circuit structures. Synaptic transmission efficacy can be bi-directionally modified through potentiation (long-term potentiation (LTP)) or depression (long-term depression (LTD)) as well as the phosphorylation state of Ser831 and Ser845 sites at the GluA1 subunit of the glutamate AMPA receptors, which has been characterized as a critical event for this synaptic plasticity. In this study, GluA1 levels and the phosphorylation at Ser845 and Ser831 in the amygdala (AMY), anterior hippocampus (aHIP) and middle gyrus of temporal neocortex (CX) were determined with western blots and compared between MTLE-HS patients who were showing (n = 06) or not showing (n = 25) IF. Patients with IF had an 11% decrease of AMY levels of the GluA1 subunit (p = 0.05) and a 21.5% decrease of aHIP levels of P-GluA1-Ser845 (p = 0.009) compared to patients not showing IF. The observed associations were not related to imbalances in the distribution of other concomitant types of aura, demographic, clinical or neurosurgical variables. The lower levels of P-GluA1-Ser845 in the aHIP of patients with IF were not related to changes in the levels of the serine/threonine-protein phosphatase PP1-alpha catalytic subunit or protein kinase A activation. Taken together, the GluA1 subunit levels in AMY and P-GluA1-Ser845 levels in the aHIP show an overall accuracy of 89.3% (specificity 95.5% and sensitivity 66.7%) to predict the presence of IF. AMY levels of the GluA1 subunit and aHIP levels of P-GluA1-Ser845 were not associated with the psychiatric diagnosis and symptoms of patients. Taken together with previous findings in MTLE-HS patients with IF who were evaluated by stereotactic implanted depth electrodes, we speculate our findings are consistent with the hypothesis that AMY is not a centre of fear but together with other sub-cortical and cortical structures integrates the defensive circuit that detect and respond to threats. This is the first report to address neuroplasticity features in human limbic structures connected to the defensive survival circuits, which has implications for the comprehension of highly prevalent psychiatric disorders and symptoms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Izquierdo I,Furini CRG,Myskiw JC, Fear memory. Physiol Rev. 2016;92:695–750.

    Google Scholar 

  2. LeDoux JE, Pine DS. Using neuroscience to help understand fear and anxiety: A two-system framework. Am J Psychiatry. 2016;173:1083–93.

    PubMed  Google Scholar 

  3. Sapolsky RM. Stress and the brain: individual variability and the inverted-U. Nat Neurosci. 2015;18:1344–6.

    CAS  PubMed  Google Scholar 

  4. Walz R,Maria R,Castro RPS,Velasco TR,Jr,Carlotti CG,Sakamoto C, et al. Cellular prion protein: implications in seizures and epilepsy. Cell Mol Neurobiol. 2002;22:249–57.

    CAS  PubMed  Google Scholar 

  5. Jefferys JGR. Models and mechanisms of experimental epilepsies. Epilepsia. 2003;44:44–50.

    PubMed  Google Scholar 

  6. Jobst BC, Cascino GD. Resective epilepsy surgery for drug-resistant focal epilepsy: a review. JAMA. 2015;313:285–93.

    PubMed  Google Scholar 

  7. Pauli C, de Oliveira Thais MER, Guarnieri R, Schwarzbold ML, Diaz AP, Ben J, et al. Decline in word-finding: the objective cognitive finding most relevant to patients after mesial temporal lobe epilepsy surgery. Epilepsy Behav. 2017;75:218–24.

    PubMed  Google Scholar 

  8. Pauli C, Schwarzbold ML, Diaz AP, de Oliveira Thais MER, Kondageski C, Linhares MN, et al. Predictors of meaningful improvement in quality of life after temporal lobe epilepsy surgery: a prospective study. Epilepsia. 2017;58:755–63.

    PubMed  Google Scholar 

  9. Wiebe S,Blume WT,Girvin JP,Eliasziw M,Effectiveness and Efficiency of Surgery for Temporal Lobe Epilepsy Study Group. A randomized, controlled trial of surgery for temporal-lobe epilepsy. N Engl J Med. 2001;345:311–8.

    CAS  PubMed  Google Scholar 

  10. Gotman J, Levtova V. Amygdala-hippocampus relationships in temporal lobe seizures: a phase-coherence study. Epilepsy Res. 1996;25:51–57.

    CAS  PubMed  Google Scholar 

  11. Bartolomei F, Lagarde S, Wendling F, Mcgonigal A, Jirsa V, Guye M, et al. Defining epileptogenic networks: contribution of SEEG and signal analysis. Epilepsia. 2017;58:1131–47.

    PubMed  Google Scholar 

  12. Muhlhofer W, Tan YL, Mueller SG, Knowlton R. MRI-negative temporal lobe epilepsy-What do we know? Epilepsia. 2017;58:727–42.

    PubMed  Google Scholar 

  13. Cendes F,Andermann F,Gloor P,Gambardella A,Lopes-Cendes I,Watson C, et al. Relationship between atrophy of the amygdala and ictal fear in temporal lobe epilepsy. Brain. 1994;117:739–46.

    PubMed  Google Scholar 

  14. Feichtinger M, Pauli E, Schäfer I, Eberhardt KW, Tomandl B, Huk J, et al. Ictal fear in temporal lobe epilepsy. Arch Neurol. 2001;58:771–7.

    CAS  PubMed  Google Scholar 

  15. Biraben A, Taussig D, Thomas P, Even C, Vignal JP, Scarabin JM, et al. Fear as the main feature of epileptic seizures. J Neurol Neurosurg Psychiatry. 2001;70:186–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Bartolomei F, Trébuchon A, Gavaret M, Régis J, Wendling F, Chauvel P. Acute alteration of emotional behaviour in epileptic seizures is related to transient desynchrony in emotion-regulation networks. Clin Neurophysiol. 2005;116:2473–9.

    PubMed  Google Scholar 

  17. Bear MF. A synaptic basis for memory storage in the cerebral cortex. Proc Natl Acad Sci USA. 1996;93:13453–13459.

    CAS  PubMed  Google Scholar 

  18. Nabavi S, Fox R, Proulx CD, Lin JY, Tsien RY, Malinow R. Engineering a memory with LTD and LTP. Nature. 2014;511:348–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Jerusalinsky D, Ferreira MBC, Walz R, Da Silva RC, Bianchin M, Ruschel AC, et al. Amnesia by post-training infusion of glutamate receptor antagonists into the amygdala, hippocampus, and entorhinal cortex. Behav Neural Biol. 1992;58:76–80.

    CAS  PubMed  Google Scholar 

  20. Izquierdo I, Medina JH, Bianchin M, Walz R, Zanatta MS, Da Silva RC, et al. Memory processing by the limbic system: role of specific neurotransmitter systems. Behav Brain Res. 1993;58:91–8.

    CAS  PubMed  Google Scholar 

  21. Walz R, Roesler R, Quevedo J, Sant’Anna MK, Madruga M, Rodrigues C, et al. Time-dependent impairment of inhibitory avoidance retention in rats by posttraining infusion of a mitogen-activated protein kinase kinase inhibitor into cortical and limbic structures. Neurobiol Learn Mem. 2000;73:11–20.

    CAS  PubMed  Google Scholar 

  22. Jerusalinsky D, Quillfeldt JA, Walz R, Da Silva RC, Medina JH, Izquierdo I. Post-training intrahippocampal infusion of protein kinase C inhibitors causes amnesia in rats. Behav Neural Biol. 1994;61:107–9.

    CAS  PubMed  Google Scholar 

  23. Whitlock JR, Heynen AJ, Shuler MG, Bear MF. Learning induces long term potentiation in the hippocampus. Science. 2006;313:1093–7.

    CAS  PubMed  Google Scholar 

  24. Henley JM, Wilkinson KA. Synaptic AMPA receptor composition in development, plasticity and disease. Nat Rev Neurosci. 2016;17:337–50.

    CAS  PubMed  Google Scholar 

  25. Huganir RL, Nicoll RA. AMPARs and synaptic plasticity: the last 25 years. Neuron. 2013;80:704–17.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Wang JQ, Guo M-L, Jin D-Z, Xue B, Fibuch EE, Mao LM. Roles of subunit phosphorylation in regulating glutamate receptor function. Eur J Pharmacol. 2014;728:183–7.

    CAS  PubMed  Google Scholar 

  27. Woolfrey KM, Dell’Acqua ML. Coordination of protein phosphorylation and dephosphorylation in synaptic plasticity. J Biol Chem. 2015;290:28604–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Esteban JA, Shi S-H, Wilson C, Nuriya M, Huganir RL, Malinow R. PKA phosphorylation of AMPA receptor subunits controls synaptic trafficking underlying plasticity. Nat Neurosci. 2003;6:136–43.

    CAS  PubMed  Google Scholar 

  29. Lee HK, Barbarosie M, Kameyama K, Bear MF, Huganir RL. Regulation of distinct AMPA receptor phosphorylation sites during bidirectional synaptic plasticity. Nature. 2000;405:955–9.

    CAS  PubMed  Google Scholar 

  30. Lopes MW, Leal RB, Guarnieri R, Schwarzbold ML, Hoeller A, Diaz AP, et al. A single high dose of dexamethasone affects the phosphorylation state of glutamate AMPA receptors in the human limbic system. Transl Psychiatry. 2016;6:e986.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Strange BA, Witter MP, Lein ES, Moser EI, Functional organization of the hippocampal longitudinal axis. Nat Rev Neurosci. 2014;15:655–69.

    CAS  PubMed  Google Scholar 

  32. Araújo D, Santos AC, Velasco TR, Wichert-Ana L, Terra-Bustamante VC, Alexandre V Jr., et al. Volumetric evidence of bilateral damage in unilateral mesial temporal lobe epilepsy. Epilepsia. 2006;47:1354–9.

    PubMed  Google Scholar 

  33. Guarnieri R, Walz R, Hallak JEC, Coimbra A, de Almeida E, Cescato MP, et al. Do psychiatric comorbidities predict postoperative seizure outcome in temporal lobe epilepsy surgery? Epilepsy Behav. 2009;14:529–34.

    PubMed  Google Scholar 

  34. Nunes JC, Zakon DB, Claudino LS, Guarnieri R, Bastos A, Queiroz LP, et al. Hippocampal sclerosis and ipsilateral headache among mesial temporal lobe epilepsy patients. Seizure. 2011;20:480–4.

    PubMed  Google Scholar 

  35. Velasco TR, Wichert-Ana L, Mathern GW, Araújo D, Walz R, Bianchin MM, et al. Utility of ictal single photon emission computed tomography in mesial temporal lobe epilepsy with hippocampal atrophy: a randomized trial. Neurosurgery. 2011;68:431–6.

    PubMed  Google Scholar 

  36. de Lemos Zingano B, Guarnieri R, Diaz AP, Schwarzbold ML, Bicalho MAH, Claudino LS, et al. Validation of diagnostic tests for depressive disorder in drug-resistant mesial temporal lobe epilepsy. Epilepsy Behav. 2015;50:61–6.

    PubMed  Google Scholar 

  37. Kwan P, Arzimanoglou A, Berg AT, Brodie MJ, Allen Hauser W, Mathern G, et al. Definition of drug resistant epilepsy: consensus proposal by the ad hoc Task Force of the ILAE Commission on Therapeutic Strategies. Epilepsia. 2009;51:1069–77.

    PubMed  Google Scholar 

  38. First M, Spitzer R, Gibbon M, Williams JB. Structured Clinical Interview for DSM-IV Axis I Disorders Clinical Version (SCID-CV). Washington: American Psychiatric Press; 1996.

    Google Scholar 

  39. Krishnamoorthy ES, Trimble MR, Blumer D. The classification of neuropsychiatric disorders in epilepsy: a proposal by the ILAE Commission on Psychobiology of Epilepsy. Epilepsy Behav. 2007;10:349–53.

    CAS  PubMed  Google Scholar 

  40. Logsdail SJ, Toone BK. Post-ictal psychoses. A clinical and phenomenological description. Br J Psychiatry. 1988;152:246–52.

    CAS  PubMed  Google Scholar 

  41. Pauli C, Thais ME, de O, Claudino LS, Bicalho MAH, Bastos AC,Guarnieri R, et al. Predictors of quality of life in patients with refractory mesial temporal lobe epilepsy. Epilepsy Behav. 2012;25:208–13.

    PubMed  Google Scholar 

  42. Zigmond AS, Snaith RP. The hospital anxiety and depression scale. Acta Psychiatr Scand. 1983;67:361–70.

    CAS  Google Scholar 

  43. Grizzle WE, Bell WC, Sexton KC. Issues in collecting, processing and storing human tissues and associated information to support biomedical research. Cancer Biomark. 2010;9:531–49.

    PubMed  PubMed Central  Google Scholar 

  44. Ronsoni MF, Remor AP, Lopes MW, Hohl A, Troncoso IHZ, Leal RB, et al. Mitochondrial respiration chain enzymatic activities in the human brain: methodological implications for tissue sampling and storage. Neurochem Res. 2016;41:880–91.

    CAS  PubMed  Google Scholar 

  45. Lopes MW, Soares FMS, De Mello N, Nunes JC, Cajado AG, De Brito D, et al. Time-dependent modulation of AMPA receptor phosphorylation and mRNA expression of NMDA receptors and glial glutamate transporters in the rat hippocampus and cerebral cortex in a pilocarpine model of epilepsy. Exp Brain Res. 2013;226:153–63.

    CAS  PubMed  Google Scholar 

  46. Lopes MW, Lopes SC, Costa AP, Gonçalves FM, Rieger DK, Peres TV, et al. Region-specific alterations of AMPA receptor phosphorylation and signaling pathways in the pilocarpine model of epilepsy. Neurochem Int. 2015;87:22–33.

    CAS  PubMed  Google Scholar 

  47. Lopes MW, Soares FMS, de Mello N, Nunes JC, de Cordova FM, Walz R, et al. Time-dependent modulation of mitogen activated protein kinases and AKT in rat hippocampus and cortex in the pilocarpine model of epilepsy. Neurochem Res. 2012;37:1868–78.

    CAS  PubMed  Google Scholar 

  48. Peterson GL. A simplification of the protein assay method of Lowry et al. which is more generally applicable. Anal Biochem. 1977;83:346–56.

    CAS  PubMed  Google Scholar 

  49. Seo SY, Oh JH, Choe ES. Protein kinase G increases AMPA receptor GluR1 phosphorylation at serine 845 after repeated cocaine administration in the rat nucleus accumbens. Neurosci Lett. 2013;544:147–51.

    CAS  PubMed  Google Scholar 

  50. Din NU, Ahmad I, Haq IU, Elahi S, Hoessli DC, Shakoori AR. The function of GluR1 and GluR2 in cerebellar and hippocampal LTP and LTD is regulated by interplay of phosphorylation and O-GlcNAc modification. J Cell Biochem. 2010;109:585–97.

    CAS  PubMed  Google Scholar 

  51. Shin LM, Liberzon I. The neurocircuitry of fear, stress, and anxiety disorders. Neuropsychopharmacology. 2010;35:169–91.

    PubMed  Google Scholar 

  52. Bevilaqua LR, Medina JH, Izquierdo I, Cammarota M. Memory consolidation induces N-methyl-D-aspartic acid-receptor- and Ca 2+/calmodulin-dependent protein kinase II-dependent modifications in alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor properties. Neuroscience. 2005;136:397–403.

    CAS  PubMed  Google Scholar 

  53. Shukla K, Kim J, Blundell J, Powell CM. Learning-induced glutamate receptor phosphorylation resembles that induced by long term potentiation. J Biol Chem. 2007;282:18100–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Roche KW, O’Brien RJ, Mammen AL, Bernhardt J, Huganir RL. Characterization of multiple phosphorylation sites on the AMPA receptor GluR1 subunit. Neuron. 1996;16:1179–88.

    CAS  Google Scholar 

  55. Derkach V, Barria A, Soderling TR. Ca2+/calmodulin-kinase II enhances channel conductance of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate type glutamate receptors. Proc Natl Acad Sci USA. 1999;96:3269–74.

    CAS  PubMed  Google Scholar 

  56. Ehlers MD. Reinsertion or degradation of AMPA receptors determined by activity-dependent endocytic sorting. Neuron. 2000;28:511–25.

    CAS  PubMed  Google Scholar 

  57. Lee HK, Kameyama K, Huganir RL, Bear MF. NMDA induces long-term synaptic depression and dephosphorylation of the GluR1 subunit of AMPA receptors in hippocampus. Neuron. 1998;21:1151–62.

    CAS  PubMed  Google Scholar 

  58. Cammarota M, Bernabeu R, Levi De Stein M, Izquierdo I, Medina JH. Learning-specific, time-dependent increases in hippocampal Ca2+/calmodulin-dependent protein kinase II activity and AMPA GluR1 subunit immunoreactivity. Eur J Neurosci. 1998;10:2669–76.

    CAS  PubMed  Google Scholar 

  59. LeDoux JE. Coming to terms with fear. Proc Natl Acad Sci USA. 2014;111:2871–8.

    CAS  PubMed  Google Scholar 

  60. Rodrigues SM, LeDoux JE, Sapolsky RM. The influence of stress hormones on fear circuitry. Proc Natl Acad Sci USA. 2014;111:2871–8.

    Google Scholar 

  61. Kim JJ, Diamond DM, Haven N, Blvd BBD. The stressed hippocampus, synaptic plasticity and lost memories. Nat Rev Neurosci. 2002;3:453–62.

    CAS  PubMed  Google Scholar 

  62. Sapolsky RM. Glucocorticoids and hippocampal atrophy in neuropsychiatric disorders. Arch Gen Psychiatry. 2000;57:925–35.

    CAS  PubMed  Google Scholar 

  63. Boutros NN, Gjini K, Moran J, Chugani H, Bowyer S. Panic versus epilepsy: a challenging differential diagnosis. Clin EEG Neurosci. 2013;44:313–8.

    PubMed  Google Scholar 

  64. Gerez M, Sada A, Tello A. Amygdalar hyperactivity, a fear-related link between panic disorder and mesiotemporal epilepsy. Clin EEG Neurosci. 2011;42:29–39.

    CAS  PubMed  Google Scholar 

  65. Adamaszek M, Olbrich S, Gallinat J. The diagnostic value of clinical EEG in detecting abnormal synchronicity in panic disorder. Clin EEG Neurosci. 2011;42:166–74.

    PubMed  Google Scholar 

  66. Blümcke I, Thom M, Aronica E, Armstrong DD, Bartolomei F, Bernasconi A, et al. International consensus classification of hippocampal sclerosis in temporal lobe epilepsy: a Task Force report from the ILAE commission on diagnostic methods. Epilepsia. 2013;54:1315–29.

    PubMed  Google Scholar 

  67. Yilmazer-Hanke DM, Wolf HK, Schramm J, Elger CE, Wiestler OD, Blümcke I. Subregional pathology of the amygdala complex and entorhinal region in surgical specimens from patients with pharmacoresistant temporal lobe epilepsy. J Neuropathol Exp Neurol. 2000;59:907–20.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by PRONEX Program (Programa de Núcleos de Excelência–NENASC Project) of FAPESC-CNPq-MS, Santa Catarina Brazil (process 56802/2010). MRC 271-05-0712 (ZAB) and FAPESC-CONFAP–THE UK ACADEMIES–2016 (ZAB and RW). Professor Dr. Peter Wolf is Special Visitor Researcher (Process 88881.030478/2013-01) supported by MEC/MCTI/CAPES/CNPq/FAPs. We thank David Lodge (School of Physiology, Pharmacology and Neuroscience, University of Bristol) for the English revision. RBL, AL, RDP, KL and RW are researchers from the Brazilian National Council for Scientific and Technological Development (CNPq). RBL and RW dedicate this work to Professor Dr. Ivan A. Izquierdo for his teachings about neurobiology of aversive memory and “in memoriam” to Professor Dr. Richard Rodnight for his teachings in phospho-proteins and signal transduction.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger Walz.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

These authors contributed equally: Rodrigo Bainy Leal, Mark William Lopes.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leal, R.B., Lopes, M.W., Formolo, D.A. et al. Amygdala levels of the GluA1 subunit of glutamate receptors and its phosphorylation state at serine 845 in the anterior hippocampus are biomarkers of ictal fear but not anxiety. Mol Psychiatry 25, 655–665 (2020). https://doi.org/10.1038/s41380-018-0084-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-018-0084-7

This article is cited by

Search

Quick links