Skip to main content
Log in

A class of 5D Hamiltonian conservative hyperchaotic systems with symmetry and multistability

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Conservative chaos systems have been investigated owing to their special advantages. Taking symmetry as a starting point, this study proposes a class of five-dimensional(5D) conservative hyperchaotic systems by constructing a generalized Hamiltonian conservative system. The proposed systems can have different types of coordinate-transformation and time-reversal symmetries. Also, the constructed systems are conservative in both volume and energy. The constructed systems are analyzed, and their conservative and chaotic properties are verified by relevant analysis methods, including the equilibrium points, phase diagram, Lyapunov exponent diagram, bifurcation diagram, and two-parameter Lyapunov exponent diagram. An interesting phenomenon, namely that the proposed systems have multistable features when the initial values are changed, is observed. Furthermore, a detailed multistable characteristic analysis of two systems is performed, and it is found that the two systems have different numbers of coexisting orbits under the same energy. And, this type of system can also exhibit the coexistence of infinite orbits of different energies. Finally, the National Institute of Standards and Technology tests confirmed that the proposed systems can produce sequences with strong pseudo-randomness, and the simulation circuit is built in Multisim software to verify the simulation results of some dynamic characteristics of the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data availability

The authors declare that the data supporting the findings of this study are available within the article.

References

  1. Qi, G., Hu, J.: Modelling of both energy and volume conservative chaotic systems and their mechanism analyses. Commun. Nonlinear Sci. Numer. Simul. 84, 105171 (2020)

    MathSciNet  MATH  Google Scholar 

  2. Ma, C., Mou, J., Xiong, L., Banerjee, S., Liu, T., Han, X.: Dynamical analysis of a new chaotic system: asymmetric multistability, offset boosting control and circuit realization. Nonlinear Dyn. 103(3), 2867–2880 (2021)

    Google Scholar 

  3. Jiao, X., Dong, E., Wang, Z.: Dynamic analysis and fpga implementation of a kolmogorov-like hyperchaotic system. Int. J. Bifurc. Chaos 31(04), 2150052 (2021)

    MathSciNet  MATH  Google Scholar 

  4. Li, Y., Chen, Z., Wang, Z., Cang, S.: An effective approach for constructing a class of 4d multicluster conservative chaotic systems without external excitation. Int. J. Bifurc. Chaos 31(13), 2150198 (2021)

    MathSciNet  MATH  Google Scholar 

  5. Qi, G., Liang, X.: Force analysis of qi chaotic system. Int. J. Bifurc. Chaos 26(14), 1650237 (2016)

    MathSciNet  MATH  Google Scholar 

  6. Liang, X., Qi, G.: Mechanical analysis and energy cycle of chen chaotic system. Braz. J. Phys. 47(3), 288–294 (2017)

    MathSciNet  Google Scholar 

  7. Cang, S., Wu, A., Zhang, R., Wang, Z., Chen, Z.: Conservative chaos in a class of nonconservative systems: Theoretical analysis and numerical demonstrations. Int. J. Bifurc. Chaos 28(07), 1850087 (2018)

    MathSciNet  MATH  Google Scholar 

  8. Liang, Z., Qin, Q., Zhou, C., Wang, N., Xu, Y., Zhou, W.: Medical image encryption algorithm based on a new five-dimensional three-leaf chaotic system and genetic operation. PLoS One 16(11), 0260014 (2021)

    Google Scholar 

  9. Wu, J., Zheng, Y., Wang, B., Zhang, Q.: Enhancing physical and thermodynamic properties of dna storage sets with end-constraint. IEEE Trans. NanoBiosci. 21(02), 184193 (2021)

    Google Scholar 

  10. Zhou, S.: A real-time one-time pad dna-chaos image encryption algorithm based on multiple keys. Opt. Laser Technol. 143, 107359 (2021)

    Google Scholar 

  11. Zhang, S., Zeng, Y.: A simple jerk-like system without equilibrium: asymmetric coexisting hidden attractors, bursting oscillation and double full feigenbaum remerging trees. Chaos Solitons Fractals 120, 25–40 (2019)

    MathSciNet  MATH  Google Scholar 

  12. Wang, S., Wang, C., Xu, C.: An image encryption algorithm based on a hidden attractor chaos system and the knuth-durstenfeld algorithm. Opt. Lasers Eng. 128, 105995 (2020)

    Google Scholar 

  13. Gu, S., Du, B., Wan, Y.: A new four-dimensional non-hamiltonian conservative hyperchaotic system. Int. J. Bifurc. Chaos 30(16), 2050242 (2020)

    MathSciNet  MATH  Google Scholar 

  14. Michtchenko, T.A., Vieira, R.S., Barros, D.A., Lépine, J.R.: Modelling resonances and orbital chaos in disk galaxies-application to a milky way spiral model. Astron. Astrophys. 597, 39 (2017)

    Google Scholar 

  15. Kaur, M., Singh, D., Sun, K., Rawat, U.: Color image encryption using non-dominated sorting genetic algorithm with local chaotic search based 5d chaotic map. Future Gener. Comput. Syst. 107, 333–350 (2020)

    Google Scholar 

  16. Cao, B., Li, X., Zhang, X., Wang, B., Zhang, Q., Wei, X.: Designing uncorrelated address constrain for dna storage by dmvo algorithm. IEEE/ACM Trans. Comput. Biol. Bioinf. 19(02), 866877 (2020)

    Google Scholar 

  17. Inglada-Pérez, L., Coto-Millán, P.: A chaos analysis of the dry bulk shipping market. Mathematics 9(17), 2065 (2021)

    Google Scholar 

  18. Ubaru, S., Horesh, L., Cohen, G.: Dynamic graph and polynomial chaos based models for contact tracing data analysis and optimal testing prescription. J. Biomed. Inform. 122, 103901 (2021)

    Google Scholar 

  19. Ojoniyi, O.S., Njah, A.N.: A 5d hyperchaotic sprott b system with coexisting hidden attractors. Chaos Solitons Fractals 87, 172–181 (2016)

    MathSciNet  MATH  Google Scholar 

  20. Li, C., Sprott, J.C., Hu, W., Xu, Y.: Infinite multistability in a self-reproducing chaotic system. Int. J. Bifurc. Chaos 27(10), 1750160 (2017)

    MathSciNet  MATH  Google Scholar 

  21. Sprott, J.C., Jafari, S., Khalaf, A.J.M., Kapitaniak, T.: Megastability: Coexistence of a countable infinity of nested attractors in a periodically-forced oscillator with spatially-periodic damping. Eur. Phys. J. Spec. Top. 226(9), 1979–1985 (2017)

    Google Scholar 

  22. Pham, V.-T., Volos, C., Jafari, S., Kapitaniak, T.: A novel cubic-equilibrium chaotic system with coexisting hidden attractors: analysis, and circuit implementation. J. Circuit. Syst. Comput. 27(04), 1850066 (2018)

    Google Scholar 

  23. Bao, B., Bao, H., Wang, N., Chen, M., Xu, Q.: Hidden extreme multistability in memristive hyperchaotic system. Chaos Solitons Fractals 94, 102–111 (2017)

    MathSciNet  MATH  Google Scholar 

  24. Zhang, S., Zeng, Y., Li, Z., Wang, M., Xiong, L.: Generating one to four-wing hidden attractors in a novel 4d no-equilibrium chaotic system with extreme multistability. Chaos 28(1), 013113 (2018)

    MathSciNet  MATH  Google Scholar 

  25. Chen, M., Sun, M., Bao, B., Wu, H., Xu, Q., Wang, J.: Controlling extreme multistability of memristor emulator-based dynamical circuit in flux-charge domain. Nonlinear Dyn. 91(2), 1395–1412 (2018)

    Google Scholar 

  26. Tan, Q., Zeng, Y., Li, Z.: A simple inductor-free memristive circuit with three line equilibria. Nonlinear Dyn. 94(3), 1585–1602 (2018)

    Google Scholar 

  27. Mezatio, B.A., Motchongom, M.T., Tekam, B.R.W., Kengne, R., Tchitnga, R., Fomethe, A.: A novel memristive 6d hyperchaotic autonomous system with hidden extreme multistability. Chaos Solitons Fractals 120, 100–115 (2019)

    MathSciNet  MATH  Google Scholar 

  28. Dong, E., Jiao, X., Du, S., Chen, Z., Qi, G.: Modeling, synchronization, and fpga implementation of hamiltonian conservative hyperchaos. Complexity 2020, 4627597 (2020)

    Google Scholar 

  29. Leng, X., Gu, S., Peng, Q., Du, B.: Study on a four-dimensional fractional-order system with dissipative and conservative properties. Chaos Solitons Fractals 150, 111185 (2021)

    MathSciNet  MATH  Google Scholar 

  30. Rajagopal, K., Akgul, A., Pham, V.-T., Alsaadi, F.E., Nazarimehr, F., Alsaadi, F.E., Jafari, S.: Multistability and coexisting attractors in a new circulant chaotic system. Int. J. Bifurc. Chaos 29(13), 1950174 (2019)

    MathSciNet  MATH  Google Scholar 

  31. Bao, J., Liu, Y.: Multistability and bifurcations in a 5d segmented disc dynamo with a curve of equilibria. Adv. Differ. Equ. 2019(1), 1–15 (2019)

    MathSciNet  MATH  Google Scholar 

  32. Yu, F., Liu, L., Qian, S., Li, L., Huang, Y., Shi, C., Cai, S., Wu, X., Du, S., Wan, Q.: Chaos-based application of a novel multistable 5d memristive hyperchaotic system with coexisting multiple attractors. Complexity 2020, 8034196 (2020)

    Google Scholar 

  33. Wan, Q., Zhou, Z., Ji, W., Wang, C., Yu, F.: Dynamic analysis and circuit realization of a novel no-equilibrium 5d memristive hyperchaotic system with hidden extreme multistability. Complexity 2020, 7106861 (2020)

    Google Scholar 

  34. Yang, J., Feng, Z., Liu, Z.: A new five-dimensional hyperchaotic system with six coexisting attractors. Qual. Theory Dyn. Syst. 20(1), 1–31 (2021)

    MathSciNet  MATH  Google Scholar 

  35. Wu, A., Cang, S., Zhang, R., Wang, Z., Chen, Z.: Hyperchaos in a conservative system with nonhyperbolic fixed points. Complexity 2018, 9430637 (2018)

    MATH  Google Scholar 

  36. Dong, E., Yuan, M., Du, S., Chen, Z.: A new class of hamiltonian conservative chaotic systems with multistability and design of pseudo-random number generator. Appl. Math. Model. 73, 40–71 (2019)

    MathSciNet  MATH  Google Scholar 

  37. Hu, J., Qi, G., Wang, Z., Chen, G.: Rare energy-conservative attractors on global invariant hypersurfaces and their multistability. Int. J. Bifurc. Chaos 31(03), 2130007 (2021)

    MathSciNet  MATH  Google Scholar 

  38. Cang, S., Wu, A., Wang, Z., Chen, Z.: Four-dimensional autonomous dynamical systems with conservative flows: two-case study. Nonlinear Dyn. 89(4), 2495–2508 (2017)

    MathSciNet  Google Scholar 

  39. Arnol’d, V.: Kolmogorov’s hydrodynamic attractors. In: Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences 434(1890), 19–22 (1991)

  40. Qi, G., Zhang, J.: Energy cycle and bound of qi chaotic system. Chaos Solitons Fractals 99, 7–15 (2017)

    MathSciNet  MATH  Google Scholar 

  41. Pasini, A., Pelino, V.: A unified view of kolmogorov and lorenz systems. Phys. Lett. A 275(5–6), 435–446 (2000)

    MathSciNet  MATH  Google Scholar 

  42. Cheng, D., Spurgeon, S.: Stabilization of hamiltonian systems with dissipation. Int. J. Control 74(5), 465–473 (2001)

    MathSciNet  MATH  Google Scholar 

  43. Jia, H., Shi, W., Wang, L., Qi, G.: Energy analysis of sprott-a system and generation of a new hamiltonian conservative chaotic system with coexisting hidden attractors. Chaos Solitons Fractals 133, 109635 (2020)

    MathSciNet  MATH  Google Scholar 

  44. Zhang, Z., Huang, L.: A new 5d hamiltonian conservative hyperchaotic system with four center type equilibrium points, wide range and coexisting hyperchaotic orbits. Nonlinear Dyn. 108(1), 637–652 (2022)

    Google Scholar 

  45. Roberts, J.A., Quispel, G.: Chaos and time-reversal symmetry. Order and chaos in reversible dynamical systems. Phys. Rep. 216(2–3), 63–177 (1992)

    MathSciNet  Google Scholar 

  46. Wang, N., Zhang, G., Bao, H.: Infinitely many coexisting conservative flows in a 4d conservative system inspired by lc circuit. Nonlinear Dyn. 99(4), 3197–3216 (2020)

    Google Scholar 

  47. Lamb, J.S., Roberts, J.A.: Time-reversal symmetry in dynamical systems: a survey. Phys. D 112(1–2), 1–39 (1998)

  48. Sprott, J.C.: Symmetric time-reversible flows with a strange attractor. Int. J. Bifurc. Chaos 25(05), 1550078 (2015)

    MathSciNet  MATH  Google Scholar 

  49. Lakshmanan, M., Rajaseekar, S.: Nonlinear dynamics integrability. In: Chaos and Patterns. Springer, Berlin (2003)

  50. Qi, G., Hu, J., Wang, Z.: Modeling of a hamiltonian conservative chaotic system and its mechanism routes from periodic to quasiperiodic, chaos and strong chaos. Appl. Math. Model. 78, 350–365 (2020)

    MathSciNet  MATH  Google Scholar 

  51. Qi, G., Gou, T., Hu, J., Chen, G.: Breaking of integrability and conservation leading to hamiltonian chaotic system and its energy-based coexistence analysis. Chaos 31(1), 013101 (2021)

  52. Rukhin, A., Soto, J., Nechvatal, J., Smid, M., Barker, E.: A statistical test suite for random and pseudorandom number generators for cryptographic applications. Preprint at https://csrc.nist.gov/publications/detail/ sp/800-22/rev-1a/final

  53. Wang, J., Yu, W., Wang, J., Zhao, Y., Zhang, J., Jiang, D.: A new six-dimensional hyperchaotic system and its secure communication circuit implementation. Int. J. Circ. Theor. Appl. 47(5), 702–717 (2019)

    Google Scholar 

  54. Perlovsky, L.I., Kozma, R.: Neurodynamics of Cognition and Consciousness. Springer, Berlin, Heidelberg (2007)

    MATH  Google Scholar 

  55. Freeman, W.: Neurodynamics: An Exploration in Mesoscopic Brain Dynamics. Springer, London (2012)

    MATH  Google Scholar 

  56. Kasabov, N.K.: Time-space. In: Spiking Neural Networks and Brain-inspired Artificial Intelligence. Springer, New York (2019)

    Google Scholar 

  57. Sergent, C., Corazzol, M., Labouret, G., Stockart, F., Wexler, M., King, J.-R., Meyniel, F., Pressnitzer, D.: Bifurcation in brain dynamics reveals a signature of conscious processing independent of report. Nat. Commun. 12(1), 1–19 (2021)

    Google Scholar 

Download references

Acknowledgements

This work is supported by the National Key Technology R &D Program of China (No. 2018YFC0910 500), the National Natural Science Foundation of China (Nos. 61425002, 61751203, 61772100, 61972266, 61802040), LiaoNing Revitalization Talents Program (No. XLYC2008017), the Innovation and Entrepreneurship Team of Dalian University (No.XQN202008), Natural Science Foundation of Liaoning Province (Nos. 2021-MS-344, 2021-KF-11-03), Scientific Research Fund of Liaoning Provincial Education Department (No. LJKZ1186), Dalian University Scientific Research Platform Program (No. 202101YB02). Shihua Zhou and Qiang Zhang are the corresponding authors of this paper.

Funding

The National Key Technology R &D Program of China (No. 2018YFC0910500), the National Natural Science Foundation of China (Nos. 61425002, 61751203, 61772100, 61972266, 61802040), LiaoNing Revitalization Talents Program (No. XLYC2008017), the Innovation and Entrepreneurship Team of Dalian University (No.XQN202008), Natural Science Foundation of Liaoning Province (Nos. 2021-MS-344, 2021-KF-11-03), Scientific Research Fund of Liaoning Provincial Education Department (No. LJKZ1186), Dalian University Scientific Research Platform Program (No. 202101YB02).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shihua Zhou or Qiang Zhang.

Ethics declarations

Conflict of interest

The authors declare that we have no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, Q., Zhou, S., Zhang, Q. et al. A class of 5D Hamiltonian conservative hyperchaotic systems with symmetry and multistability. Nonlinear Dyn 110, 2889–2912 (2022). https://doi.org/10.1007/s11071-022-07735-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-07735-6

Keywords

Navigation